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The propagation of harmonic waves through a system formed of coaxial tubes filled with
incompressible continua is considered as a model of arterial pulse propagation in the
craniospinal cavity. The inner tube represents a blood vessel and is modelled as a thin-walled
membrane shell. The outer tube is assumed to be rigid to account for the constraint imposed
on the vessels by the skull and the vertebrae. We consider two models: in the first model the
annulus between the tubes is filled with fluid; in the second model the annulus is filled with a
viscoelastic solid separated from the tubes by thin layers of fluid. In both models, the elastic
tube is filled with fluid. The motion of the fluid is described by the linearized form of the
Navier–Stokes equations, and the motion of the solid by classical elasticity theory. The results
show that the wave speed in the system is lower than that for a fluid-filled elastic tube free of
any constraint. This is due to the stresses generated to satisfy the condition that the volume in
the system has to be conserved. However, the effect of the constraint weakens as the radius of
the outer tube is increased, and it should be insignificant for the typical physiological
parameter range. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Analytic models of wave propagation in fluid-filled elastic tubes have been used
extensively to describe pulse propagation in the arterial system (Lamb 1898; Womersley
1955; Cox 1968). The most compact analysis to date was given by Womersley (1955), who
obtained a simple closed-form solution for the long wave speed in a freely moving thin-
walled tube filled with a viscous fluid. Numerous attempts have been made since to
0889-9746/02/081029+21 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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upgrade the theory of arterial blood flow and pressure propagation. Much of the effort has
been focused on vessel modelling, either to introduce a thick-walled approximation for the
tube (Cox 1968), or to include features such as initial stress and anisotropy (Atabek & Lew
1966; Atabek 1968). More recently, the emphasis has been on introducing the nonlinear
fluid terms into analysis (Ling & Atabek 1972; Wang & Tarbell 1992). This type of
modelling, however, typically requires a numerical solution. Linear pulse propagation
models can be divided into freely moving and constrained, with respect to whether the
interaction of the tube with the surrounding tissue is ignored or not (Cox 1969).
Constrained models vary in complexity, from those which simply assume that the
longitudinal motion is zero (Ling & Atabek 1972), to those which approximate the
surrounding tissue as an additional mass (Womersley 1957a), or a mass, spring, dashpot
system (Atabek 1968). Dinar (1975) treated the surrounding tissue as infinite viscoelastic
continuum and concluded that the wave speed is affected mainly by the viscosity of the
surrounding structures.
We are interested in pulse propagation in the craniospinal cavity; the craniospinal cavity

is confined by the skull and vertebrae, and filled by the nervous tissue, blood vessels, and
cerebrospinal fluid (CSF), which are all largely comprised of water, and are thus
essentially incompressible (Ruan et al. 1991). Since the skull and vertebrae are effectively
rigid, it is routinely assumed that the total cranial volume does not change. This is
expressed through the Monroe–Kelly principle, which states that the sum of the blood,
CSF, and tissue volume inside of the craniospinal cavity must always stay constant
(Ursino 1988). The total volume of the cavity is 1 600–1 700 cm3; about 150 cm3 of that
volume is occupied by the CSF, 100 cm3 by blood, and the remainder by the brain and the
spinal cord (Takemae et al. 1987; Guyton & Hall 1996). Most of the CSF is contained
within the ventricles of the brain. The CSF also occupies the space between pia mater and
arachnoid membrane of the brain and spinal cord (subarachnoid space), the space between
the arachnoid membrane and dura (epidural space), and the space between the blood
vessels and the nervous tissue (perivascular space) (Gray 1948). There is strong evidence of
interaction between blood flow and CSF dynamics; there is a CSF pulse, which is a
reflection of the blood pressure pulse (Lakin & Gross 1992; Portnoy & Chopp 1994);
pathologically raised CSF pressure is associated with a drop in the cerebral blood flow and
increase in the pulsatility of the CSF pressure (Kety et al. 1947); there is a significant
pulsatile movement of the CSF in the spinal cavity (Loth et al. 2001).
Our goal is to develop a linear model of pulse propagation that will take account of

the conservation of volume in the craniospinal cavity. In order that conservation of
volume be imposed, the transverse dimension of the system representing cranial
circulation has to be finite. Also, all of the intracranial components (blood, nervous
tissue, CSF) have to be represented in the model, and treated as continua. The focus is on
identifying the effect of the skull (vertebrae) constraint on pulse propagation. Therefore,
we choose a simple model for the vessel wall, that will allow us to directly evaluate the
effect of the constraint by comparing the results of the model with well-established
solutions provided by Lamb (1898) and Womersley (1955).

2. METHODS

2.1. Model

We consider wave propagation in a system formed of coaxial circular tubes of infinite
length. It is assumed that the wave amplitude is small so that the governing equations can
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be linearized. The analysis is restricted to harmonic travelling waves of arbitrary
wavelength. The inner tube, which represents a blood vessel, is flexible, while the outer
tube, which represents the skull or vertebrae, is rigid. Both the flexible tube and the
annulus between the tubes are filled with incompressible continua, representing blood,
CSF, and nervous tissue. Therefore, the net volume flux through any cross-section of the
model must be zero.
We examine two models that differ with respect to the content of the annulus between

the tubes. In Model 1, all of the annulus is filled with fluid representing the CSF (Model 1
in Figure 1). Although this model is not very realistic, as it ignores the presence of the
nervous tissue, it is useful for obtaining an immediate insight into the effect of the
constraint on the pulse speed. In Model 2, the annulus is occupied by a viscoelastic solid,
representing the nervous tissue, separated from both tubes by layers of viscous fluid,
representing the CSF (Model 2 in Figure 1). The fluid layer between the rigid tube and the
solid ðyc25y5y0, in Figure 1) represents the subarachnoid space, whereas the layer
between the flexible tube and the solid (15y5yc1, in Figure 1) represents the perivascular
space. Both in Models 1 and 2 the flexible tube is occupied by fluid representing blood. For
Model 1, we examine both the case where the fluids in the tube and the annulus are inviscid,
and the case where the fluids are viscous. For Model 2, we consider only viscous fluids.

2.2. Governing Equations and Boundary Conditions

Wave propagation in the system considered involves the interaction between the vessel, the
fluid contained within the vessel, and the contents of the annulus. Therefore, the
Figure 1. Models used in the analysis: An elastic tube (blood vessel) filled with incompressible fluid (blood) is
enclosed within a rigid tube (skull, vertebrae). The annulus between the tubes is filled with incompressible
continua. Model 1: The annulus between the tubes is filled with fluid (CSF). Model 2: The annulus between the
tubes is filled with a viscoelastic solid (nervous tissue) separated from the tubes by fluid (CSF) layers of thickness

yc1 � 1 (perivascular space) and y0 � yc2 (subarachnoid space).
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mathematical statement of the problem involves the equations governing the motion of the
vessel, fluid, and solid, as well as the boundary conditions at all of the interfaces. Since we
are interested in small amplitude wave propagation, the governing equations and
boundary conditions are given in their linearized forms.

2.2.1. Equations of motion of the vessel

We consider a thin cylindrical tube of undisturbed radius R and wall thickness h. The tube
wall is homogeneous, isotropic, and linearly elastic, with Young’s modulus E, density r,
and Poisson’s coefficient e. The tube is subjected to action of radial and axial external force
per unit area tr and tz. The equations of motion are
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(Morgan & Kiely 1954; Womersley 1957b), where t is the time, z is the axial coordinate,
and zðz; tÞ and Zðz; tÞ are axial and radial displacements of the tube wall, respectively.

2.2.2. Equations of motion of the fluid

We assume that blood and CSF are incompressible Newtonian fluids. We further assume
that the flow is axially symmetric, body forces are absent, and the magnitudes of the
velocity components and their derivatives are so small that their products can be
neglected. Under these assumptions the Navier–Stokes and continuity equations in
cylindrical coordinates reduce to
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where r is the radial coordinate, rf is the density of the fluid, n is the kinematic viscosity, p
is the pressure, and vz and vr axial and radial components of velocity, respectively. The
stresses in the fluid are

srr ¼ p� 2m
@vr
@r

; srz ¼ m
@vr
@z

þ
@vz
@r

� �
; ð3Þ

where m is the dynamic viscosity of the fluid.

2.2.3. Equations of motion of the solid

The brain tissue is assumed to be linear, viscoelastic, isotropic and incompressible.
The equations of motion and the condition of incompressibility in cylindrical
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coordinates are
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(Love 1944). Here, rs is the density of the solid, G the complex shear modulus, P a finite
pressure, and uz and ur are the axial and radial components of displacement, respectively.
The stresses in the solid are
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2.4.4. Boundary conditions

The following boundary conditions have to be satisfied for Model 1.

(i) The kinematic condition at the wall of the rigid outer tube. In the case where inviscid
fluids are considered, slip parallel to the boundary is allowed. Thus,

at y ¼ y0
vz ¼ 0 ðviscous fluid onlyÞ;

vr ¼ 0:

(
ð6Þ

(ii) The kinematic conditions at the flexible tube wall, both for the fluid in the tube and
for the fluid in the annulus. In the case where inviscid fluids are considered, slip
parallel to the boundary is allowed. Thus,

at y ¼ 1

vz ¼
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(iii) Symmetry at y ¼ 0 for the fluid in the flexible tube, i.e.,

at y ¼ 0
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vr ¼ 0:
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For inviscid fluid, this reduces to a single condition, and either of equations (8) can be
used.
The boundary conditions above also apply to Model 2, which must also satisfy: (a) the

kinematic conditions at the fluid–solid boundaries in the annulus,

at y ¼ yc1 and y ¼ yc2
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(b) continuity of stresses at the fluid–solid boundaries in the annulus,

at y ¼ yc1 and y ¼ yc2
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The total number of boundary conditions for Model 1 is four if the fluids in the tube and
the annulus are inviscid, and eight if they are viscous. For Model 2, the total number of
boundary conditions is 16. The boundary conditions are linearized in the sense that they
are applied at the undisturbed rather than at the actual boundaries. The error introduced
by the linearization of the boundary condition is of the same order of magnitude as that
due to linearization of fluid equations (Morgan & Kiely 1954).

2.3. Solution

We consider the propagation of waves which are harmonic in t and z. Therefore, any
variable qðr; z; tÞ in equations (2)–(5) is assumed to be of the form

%qqðrÞ eioðt�z=cÞ; ð11Þ

where o is the circular frequency and c is the wave speed. Under this assumption the
solutions of equations (2) and (4) are
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and
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(Cox 1968). Where y ¼ r=R, Jn;Yn ðn ¼ 0; 1Þ are nth order Bessel functions of the first
and second kind, respectively, and A0;A00;D0 and D00 are constants. Also,
g ¼ ½o2R2=ðG=rsÞ� þ k2

� 
1=2
, b ¼ a2i3 þ k2

� �1=2
, a ¼ R o=n

� �1=2
(the Womersley number),

and k ¼ iRo=c. The parameter k is proportional to the ratio of the flexible tube radius
and the wavelength (l). For inviscid fluids, b is infinite, and the first two terms on the
right-hand side of the expressions for velocities in equations (12) are zero. The
expressions for stresses are obtained by substituting equations (12) and (13) into (3)
and (5).
The vessel displacements are of the form

z ¼Meioðt�z=cÞ; Z ¼ Neioðt�z=cÞ; ð14Þ
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where M and N are the amplitudes of the axial and radial tube motion, respectively. The
external forces acting on the vessel wall are fluid stresses at the vessel wall ðy ¼ 1Þ, and can
be written as

tz ¼ fð %ssarz � %sstrzÞy¼1ge
ioðt�z=cÞ; tr ¼ fð %sstrr � %ssarrÞy¼1ge

ioðt�z=cÞ; ð15Þ

where superscripts t and a denote fluids in the tube and the annulus, respectively. The
equations of motion of the elastic tube can now be rewritten as
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where d ¼ hr=Rrtf and X ¼ Ed=½c2rð1� e2Þ�.

2.3.1. Solution for Model 1

The linearized solution of equations (2) is incorporated into the boundary conditions given
in equations (6)–(8). Together with the linearized equations of motion of the elastic tube
[equation (16)], this yields a homogeneous system of algebraic equations, where the
unknowns are the constants in the expressions for the fluid velocities and the amplitudes of
the vessel motion. The dimension of the system is 6� 6, when the fluids in the tube and the
annulus are inviscid, and 10� 10 when the fluids are viscous. Since the system is
homogeneous, the unknown constants cannot be calculated independently but they can be
interrelated (Cox 1968). Thus, the boundary conditions can be used to express all of the
remaining constants in terms of the amplitudes of the vessel motion. Then, the system is
reduced to the equations of the vessel motion, where the only unknowns areM and N. The
analysis is simplified by the fact that the situation relevant for pulse propagation in
the arteries is the one where k� 1 (Cox 1968). Furthermore, if a long wave approximation
is used, i.e., if it is assumed that the wavelength is much larger than the transverse
dimensions of the system ðy0R=l � 1Þ, the following asymptotic expressions can be
used:
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ð17Þ

since ky� 1 (Atabek & Lew 1966). Also, for a typical physiological parameter range, the
terms which are of the order ðk=aÞ2 compared with the leading terms can be ignored
(Womersley 1957a).
We first consider the simplest case, in which both the tube and the annulus are filled with

inviscid fluid. When the long wave approximation is used, the following expressions are
obtained for the velocities and stresses in the tube
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and in the annulus
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where At ¼ A0t
f , A

a ¼ A0a
f . Recall that superscripts t and a are used to distinguish whether a

parameter is associated with the fluid in the vessel or with the fluid in the annulus between
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the vessel and the rigid tube. The conditions that %vvar jy¼y0 ¼ 0 and %vvtrjy¼0 ¼ 0 are used to
eliminate the constants A00t

f and A
00a
f . Upon applying the condition that %vv

t
r ¼ %vvar ¼ ioN at

the vessel wall, we obtain
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Equations (20) and (16) can be combined into the following homogeneous system:
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For a nontrivial solution to exist, the determinant of the system has to be zero. Therefore,
the following dispersion equation has to be satisfied:
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The long wave solution, for the case when the fluids in the annulus and the tube are
viscous, is somewhat cumbersome and it will be discussed only in general terms. For the
detailed derivation the reader should refer to Appendix A. When the constants
A0
f ; A

00
f ; D

0
f ; and D

00
f are eliminated using the boundary conditions, the terms associated

with the external forces in equations (16) can be written as
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where Yzz, Yrz, and Yrr are nondimensional functions of y0, raf =r
t
f , a

t, and aa which are
given in Appendix A. The dispersion equation is
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When y0 is large, equations (17) may no longer be accurate for the fluid in the annulus,
even if k � 1. To test the validity of long wave approximation, we compared it with a
solution for arbitrary wavelength, obtained by an iterative method that will be described in
the next paragraph.

2.3.2. Solution for Model 2

The linearized solution of equations (2) and (4) is incorporated into the boundary
conditions given in equations (6)–(10). Together with equations (16), this yields a
homogeneous system of 18 algebraic equations. We use the same approach as for Model 1,
where the boundary conditions are used to eliminate all of the unknown constants except
the amplitudes of the vessel motion. However, the shear modulus of the brain tissue is of
the order 103–104 Pa (Fallenstein et al. 1969; Galford & McElhaney 1970; Shuck &
Advani 1972), g is of the same order as k, and the terms of the order ðk=gÞ2 compared with
the leading terms can no longer be ignored. Consequently, for this model it is not possible
to obtain a closed-form solution even if a long wave approximation is used and there is no
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benefit from using the asymptotic expressions given in equations (17). The solution is
obtained iteratively in the following way:

(i) the values of the parameters y0 and at are chosen as independent variables;
(ii) an initial guess for parameter k is made from the long wave result of Model 1 for the

same values of y0 and at;
(iii) current values of the parameters bt;ba; and g are calculated from the chosen value of

at and the current value of k;
(iv) the current values of k, bt; ba; and g are substituted into the boundary conditions

and all of the remaining unknown constants are expressed in terms of the amplitudes
of the vessel motion using classical methods of linear algebra (Wylie & Barrett 1982);

(v) the results of the previous step are incorporated into equations (16) in order to
eliminate all of the constants exceptM and N, and X is calculated from the condition
that the determinant of the system must be zero.

(vi) the new values of c and k are determined from the calculated X .

The procedure is repeated until the values of k from two successive iterations are
sufficiently close.

3. RESULTS

3.1. Model 1

The results were obtained using a long wave approximation, and tested using the full
equations solved by the iterative method described in the previous section. We found the
solution obtained by the two methods to be in excellent agreement for the range of
parameters used in the simulations.
When the tube and the annulus are occupied by inviscid fluids, the wave speeds obtained

from equation (22) for d � 1 are

c1 ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed

2rtf 1þ
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rtf

1

y20 � 1

 !
vuuuut ;

c2 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� e2Þ

r
:

ð25Þ

The first mode is called Young’s mode and represents pressure waves propagating in the
fluid, while the second, Lamb’s mode, represents waves travelling within the wall (Cox
1969). For comparison, the solution for an unconstrained tube filled with inviscid
incompressible fluid is

c01 ’

ffiffiffiffiffiffiffi
Ed
2rtf

s
; c02 ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� e2Þ

s
; ð26Þ

(Lamb 1898). Therefore, the wave speed for Young’s mode ðc1Þ decreases due to the
constraint, whereas the wave speed for Lamb’s mode ðc2Þ is not affected by the constraint.
Inspection of equations (16) and (21) shows that the inertia term in the transverse equation
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of the vessel motion can be written as

2 1þ
raf
rtf

1

y20 � 1

 !
� k2d ’ 2 1þ

raf
rtf

1

y20 � 1

 !
; ð27Þ

where �k2d is the radial inertia term of a completely free empty tube (Graff 1991)
which is positive and real since k is purely imaginary. For an unconstrained tube filled with
inviscid fluid, the radial inertia term is �k2dþ 2. The term 2ðraf =r

t
f Þ½1=ðy

2
0 � 1Þ� accounts

for the effect of the fluid in the annulus, and it can be interpreted as increase of the effective
radial inertia. This term tends to zero with increasing y0, meaning that the effect of the
constraint weakens as the radius of the rigid tube increases. Figure 2 shows that the rate at
which c1 approaches c01, with increasing y0, depends on the ratio of raf to rtf . For
physiological applications, the most relevant case is the one where raf ¼ rcf ,
c1=c01 ¼ 1� y�20

� �1=2
, and wave speeds of constrained and unconstrained vessels differ

by 51% for y0 ¼ 10.
Pressures and velocities in the annulus can be related to those in the elastic tube using

equations (18) and (19) and the condition that %vvar jy¼1 ¼ %vvtrjy¼1. The fact that neither the
pressure nor the axial velocity vary over a cross-section facilitates the analysis. The ratio of
velocities in the annulus and the tube is given by

%vvaz
%vvtz

¼ �
1

y20 � 1

� �
: ð28Þ

The fluid in the annulus moves in the direction opposite to that of the fluid in the tube with
a velocity that is inversely proportional to y20 � 1. It follows from equation (28) that the
volumetric flow rates in the elastic tube and the annulus are of the same magnitude but of
the opposite sign and that the net volumetric flow rate in each cross-section is always zero.
The ratio of the pressures is raf =r

t
f times that of the velocity ratio which reflects the fact

that, unlike the volume flux, the mass flux is not zero unless raf ¼ rtf :
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%ppt
¼ �

raf
rtf

1

y20 � 1

� �
: ð29Þ
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Figure 2. Wave speed for Young’s mode in terms of parameter y0, for Model 1 and inviscid fluids. The wave
speed is normalized with respect to c01 ¼ ðEd=2rtf Þ

1=2.
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It can be seen from equations (28) and (29) that j%vvaz j > j%vvtzj for y05
ffiffiffi
2

p
, j %ppaj > j %pptj for

y05ðraf =r
t
f þ 1Þ

1=2, and that both %vvaz and %ppa rapidly decrease with increasing y0. According
to equations (18) and (19) the maximal radial velocity is at the vessel wall, both for the
fluid in the tube and the fluid in the annulus. Therefore, the maximal values of the radial
velocities in the tube and the annulus are the same regardless of y0.
When the tube and the annulus are occupied by viscous fluids, the wave speed depends

on at and aa, as well as y0, and raf =r
t
f . We restricted the analysis to the values of parameters

corresponding to the blood and CSF. Since the composition of the CSF is similar to that
of blood plasma (Sullivan & Allison 1985), it was assumed that the density and viscosity of
the CSF are the same as those of plasma and that ma=mt ¼ 0�25 and raf =r

t
f ¼ 1. It was also

assumed that d ¼ 0�1. Then, the wave speed is a function of at and y0 only. The phase
speed and transmission per wavelength can be calculated from the complex wave speed
obtained from equation (24). We show the results only for Young’s mode since it is the
mode relevant for blood pulse propagation. The phase speed and transmission per
wavelength are shown as functions of at in Figures 3 and 4, and the results for three values
of at and y0 are tabulated in Table 1. The symbols indicate Womersley’s solution for an
unconstrained tube. In general, the effect of the constraint is to reduce the wave speed and
increase the attenuation. This effect weakens with increasing y0, and the solution
approaches that of Womersley. For the parameters used in the study, the phase speed for
the constrained tube differs by55% from that predicted by Womersley for y054, whereas
the effect of the constraint on the wave attenuation is weak for y052. With increasing at,
the inviscid solution is approached.
The velocity profiles can be reconstructed by assuming that the flow is driven by a

harmonic pressure in the vessel, and expressing all of the remaining constants in terms of
the pressure amplitude ðAtÞ. Figure 5 displays velocity profiles over a half-cycle, for
y0 ¼ 1�5, and at ¼ 2 and 10. The velocity profiles are flatter for at ¼ 10 since the effect of
viscosity becomes weaker at higher Womersley numbers. It is obvious from the figure that
the bulk fluid motions in the tube and the annulus are in the opposite directions. The
integration of the expressions for the axial velocity in the vessel and the annulus given in
Appendix A yields the following results for the volumetric flow rates normalized with
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Figure 3. Phase velocity in terms of the Womersley number at, for Model 1 and viscous fluids. The phase
velocity is normalized with respect to c01 ¼ ðEd=2rtf Þ

1=2. It was assumed that ma=mt ¼ 0�25; raf =r
t
f ¼ 1, and

d ¼ 0�1. The solid lines show the solutions given by the model for different values of parameter y0, and the
symbols show Womersley’s solution. The results are tabulated in Table 1.



Table 1

Phase velocity and transmission per wavelength for Model 1 and viscous fluids, and Womersley’s
solution for the same values of at

c1=c01 Trans. per l

Womersley 0�22789 0�00220
at ¼ 0�4 y0 ¼ 1�5 0�13609 0�00212

Model 1 y0 ¼ 2�0 0�21169 0�00231
y0 ¼ 4�0 0�22737 0�00222

Womersley 0�84259 0�04238
at ¼ 2�0 y0 ¼ 1�5 0�53483 0�02194

Model 1 y0 ¼ 2�0 0�72117 0�06559
y0 ¼ 4�0 0�82404 0�05043

Womersley 0�95769 0�74827
at ¼ 10�0 y0 ¼ 1�5 0�70032 0�63922

Model 1 y0 ¼ 2�0 0�82598 0�73409
y0 ¼ 4�0 0�92598 0�74756
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Figure 4. Transmission per wavelength in terms of the Womersley number at, for Model 1 and viscous fluids.
It was assumed that ma=mt ¼ 0�25; raf =r

t
f ¼ 1, and d ¼ 0�1. The solid lines show the solutions given by the model

for different values of parameter y0, and the symbols show Womersley’s solution. The results are tabulated in
Table 1.
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respect to pR2
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k
%vvtr

""""
y¼1
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2

Z y0
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k
%vvar

""""
y¼1

:
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Figure 5. Velocity profiles over a half-cycle, for Model 1 and viscous fluids, calculated for at ¼ 2 (top) and
at ¼ 10 (bottom). Solid line shows the profiles in the tube, while the broken line shows the profiles in the annulus.

Bold line represents the rigid tube.
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Since the kinematic condition at the tube wall requires that %vvtrjy¼1 ¼ %vvar jy¼1, the volume
fluxes in the tube and the annulus are of the same magnitude and of the opposite sign, and
the volume conservation is satisfied.

3.2. Model 2

This relatively complex model introduces two new geometric parameters: yc1 and yc2, as
well as physical properties of the solid, which can strongly influence the solution.
Moreover, by introducing another elastic structure in the model, we may expect that the
dispersion equation has more than two roots, even for the long wave case. However, since
we are mainly interested in blood pulse propagation, we restrict our attention to a
physiologically plausible range of parameters and Young’s mode of wave propagation.
The brain tissue is modelled as a standard viscoelastic solid based on the experimental
results reported by Shuck & Advani (1972). The vessel radius and elastic properties are
chosen to represent larger cranial and spinal arteries and are based on the values reported
by Hilen et al. (1986), Zagzoule & Marc-Vergnes (1986), and Sheng et al. (1995). Based on
the typical diameter of the anterior spinal artery of approximately 1 mm (Dommisse 1975)
and the typical width of the vertebral canal of approximately 10–20 mm (Lang 1993), the
minimal value of the parameter y0 for the spine is approximately 10. For the arteries in the
cranium y0 is larger, since the typical width of the skull is approximately 150 mm
(Wismans & Van Oorschot 1993), whereas the radius of the largest intracranial arteries is
approximately 2–3 mm. We choose y0 ¼ 10 as a physiologically plausible value that
maximizes the effect of the constraint. The value of yc2 ¼ 8 is based on the fact that the
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subarachnoid space hosts some of the larger veins, such as the interior venous plexus in the
spine. Unfortunately, there is little quantitative information in the literature about the
dimensions of the perivascular space, which is present up to the level of microcirculation
(Guyton & Hall 1996). Based on the qualitative observations, the width of the perivascular
space should be of the order of magnitude of the vessel diameter (Gluhbegovic & Williams
1980). We therefore consider yc1 ¼ 1�1 and 2�0 as the extreme cases. The values of the
parameters used in the simulations are summarized in Table 2.
The results are displayed in Figures 6 and 7 and tabulated in Table 3. We see from the

figures that there is little difference between the predictions of the model and the
Womersley solution for yc1 ¼ 2�0. It should be noted that replacing the standard
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Figure 6. Phase velocity in terms of the Womersley number at, for Model 2 and the values of parameters given
in Table 2. The phase velocity is normalized with respect to c01 ¼ ðEd=2rtf Þ

1=2. The solid lines show the solutions
given by the model for two values of yc1, and the symbols showWomersley’s solution. The results are tabulated in

Table 3.

Table 2

The parameters used in the simulation involving Model 2

yc1 2�0 or 1�1
Geometry yc2 8�0

y0 10�0

R 10�3 m
Flexible h 10�4 m
tube r 103 kg m3

E 4� 106 Pa
e 0�5

Fluid in rtf 103 kg m3

the tube mt 4� 10�3 kg m s

Fluid in raf 103 kg m3

the annulus ma 10�3 kg m s
Viscoelastic rs 103 kg m3

solid G 7�851þ0�0053 io1þ0�0021 io � 103 Pa
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Figure 7. Transmission per wavelength in terms of the Womersley number at, for Model 2 and the values of
parameters given in Table 2. The solid lines show the solutions given by the model for two values of yc1, and the

symbols show Womersley’s solution. The results are tabulated in Table 3.

Table 3

Phase velocity and transmission per wavelength for Model 2 and the values of parameters given in
Table 2, and Womersley’s solution for the same values of at

c1=c01 Trans. per l

Womersley 0�22789 0�002203
at ¼ 0�4 Model 2 yc1 ¼ 2�0 0�22887 0�002201

yc1 ¼ 1�1 0�23076 0�002203

Womersley 0�84259 0�04238
at ¼ 2�0 Model 2 yc1 ¼ 2�0 0�84626 0�04382

yc1 ¼ 1�1 0�84915 0�04508

Womersley 0�95769 0�74827
at ¼ 10�0 Model 2 yc1 ¼ 2�0 0�95668 0�73572

yc1 ¼ 1�1 0�96915 0�71989
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viscoelastic solid with the Maxwell solid or increasing the shear modulus by an order of
magnitude has no significant effect on the results, for this value of yc1. In fact, the results
differ very little from those obtained for Model 1 and viscous fluids. When yc1 ¼ 1�1, there
is a slight increase in the wave speed and in the attenuation for larger at. However, the
effect is still relatively weak.
Again, we can express all of the constants in terms of At and calculate fluid and solid

velocities in terms of the driving pressure in the vessel. Table 4 gives area-averaged
velocities and flow rates for at ¼ 2. The solid and the fluid layers between the solid and the
rigid tubes both move much slower than either the fluid in the vessel or the fluid between
the vessel and the solid. However, due to the large cross-sectional area the volume flux of
the solid is significant. The numerical summation of the flow rates confirms that the
conservation of volume in the system is satisfied.



Table 4

Average velocities and flow rates for different layers in Model 2 calculated for the values of
parameters given in Table 2 ðyc1 ¼ 2�0Þ, and for at ¼ 2�0

ðAt=rtf cÞ
�1 R %vvzy dy=

R
y dy 2ðAt=rtf cÞ

�1 R %vvzy dy Phase angle

Blood ð04y41Þ 0�4643 0�4643 618
CSF ð14y4yc1Þ 0�0187 0�0561 618
Tissue ðyc14y4yc2Þ 0�0060 0�3607 �1248
CSF ðyc24y4y0Þ 0�0049 0�1764 �1078

S. CIROVIC, C. WALSH AND W. D. FRASER1044
4. DISCUSSION

The models show that the main effect of the constraint is to decrease the wave speed for
Young’s mode, primarily through the action of the normal stresses on the outer surface of
the vessel. The magnitude of the normal stress in the annulus is dictated by the
conservation of volume in the system. This is evident from the results for Model 1 and
inviscid fluids, where the action of the normal stresses on the vessel can be interpreted as
an increase of the effective radial inertia of the vessel. The effect of the constraint weakens
rapidly with increasing y0 since the cross-sectional area of the annulus becomes large
compared to that of the tube, and a small pressure gradient is sufficient to create a volume
flux of the same magnitude as that in the tube. When the medium in the annulus is viscous,
the effect of the continuum surrounding the vessel is not eliminated, even when the
transverse dimension of the system is infinite (Dinar 1975). However, the results for
both Models 1 and 2 with yc1 ¼ 2�0 differ very little from Womersley’s solution. We
attribute this to the fact that the viscosity of the CSF layer separating the vessel from the
tissue is relatively low. When yc1 is very small, the effect of the tissue viscosity is more
evident.
The analysis is based on the assumption that the amplitudes are small and that the

nonlinear terms in the equations of motion can be neglected. The convective term in the
Navier–Stokes equations is small compared to the other terms, and the amplitude of the
radial vessel motion is much smaller than the R used if jvz=cj � 1 (Pedley 1980). In
general, these conditions are satisfied for pulse propagation in the arteries outside of the
craniospinal cavity. For the model, the condition that the fluid velocity is much smaller
than the wave speed has to be satisfied both for the fluid in the tube and the fluid in the
annulus. Also, the amplitude of the vessel motion should be much smaller than the width
of the annulus. For a large y0, both of these conditions are satisfied since the fluid
velocities in the annulus are small compared to those in the vessel, and the width of the
annulus is larger than the tube radius. For y052 the width of the annulus is smaller than
the vessel radius, and for y05

ffiffiffi
2

p
the average axial velocity in the annulus is larger than

that in the vessel. Also, for y052 the wave speed is considerably reduced due to the
constraint. Therefore, the validity of the linear analysis may be questionable for small y0.
However, for physiological applications we are primarily interested in situations where
y0 > 2 and the linear analysis should hold.
Much of the analysis was performed using a long wave approximation, which requires

that the transverse dimensions of the system be significantly smaller than the wavelength.
In our case the long wave approximation is acceptable if ky0 is small, i.e., the radius of the
rigid tube is much smaller than the wavelength. For the larger arteries, the wavelength of



A MODEL OF CRANIAL PULSE PROPAGATION 1045
the blood pulse is of the order of a metre, and it increases further down the arterial tree,
whereas the dimensions of the cranium and the spinal canal are of the order of 10�1

and 10�2 m, respectively. Therefore, the long wave approximation should be valid
for the range of parameters of interest. The simulations show that the condition
for the effect of the constraint to be weak is that y0 is large, even though ky0 may
still be much smaller than unity. In fact, the effect of the constraint can be very small
even if the radius of the rigid tube is of the same order of magnitude as the radius of the
vessel.
The model captures the conservation of volume, characteristic of the cranial blood flow,

within the framework of a classical linear analysis of pulse propagation in the arteries.
Difficulties do arise in the choice of parameters, such as the thickness of the perivascular
space. Fortunately, our simulations showed that the solution is affected only if it is
assumed that the perivascular space is an order of magnitude smaller than the vessel
radius. The model shows: (i) that the speed at which a disturbance propagates in the CSF
layer is the same as the speed of blood pulse propagation; (ii) that the CSF pulse is a
consequence of volume conservation in the system. A crude estimate of the CSF pulse
amplitude made by using equation (29), and y0 ¼ 4 based on the total volumes of blood,
CSF, and nervous tissue in the cranium, suggests that the CSF pulse should be an order of
magnitude lower than that of the blood pulse. This is within the range of the results
reported in the literature (Greenfield and Tindall 1965). Equation (28) can be used in a
similar way to relate the movement of the CSF in the spinal cavity with the propagation of
the blood pulse. However, in a real physiological system, the CSF pulse reflects the sum of
the blood pulses in the craniospinal cavity, and a more thorough insight into the CSF
dynamics requires a model that will take into account the whole intracranial network of
vessels rather than a single vessel.

5. CONCLUSIONS

The main effect of the constraint imposed on an elastic fluid-filled tube by a coaxial rigid
tube filled with incompressible continua is to reduce the wave speed for Young’s mode of
propagation. The main reason is the increase of the effective radial inertia due to the
normal stresses in the fluid in the annulus, necessary to maintain the constant volume in
the system. The long wave approximation is justified for the physiologically plausible
range of parameters. For Model 1 a closed-form solution is available, whereas for Model 2
an iterative method has to be used.
The principal physiological application of the results is that the dimensions of the skull

and the vertebral canal, compared to that of a typical blood vessel, should be large enough
to make the effect of the constraint weak. Therefore, we believe that it is appropriate to
ignore the effects of the constraint when considering the speed of pulse propagation in the
craniospinal cavity. On the other hand, the effect of the constraint is important for the
understanding of the CSF pressure pulse and motion, which should be a direct
consequence of the blood–CSF coupling necessary to satisfy the conservation of the
cranial volume.
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APPENDIX: A

Long Wave Solution for Model 1 and Viscous Fluids

In the long wave approximation, all of the terms of the order k2 and ðk=aÞ2 compared with
the leading terms are neglected. Also, the asymptotic expressions given in equations (17)
are used for the Bessel functions with argument ky. Upon applying the symmetry
condition at y ¼ 0, constants D00

f and A
00
f in equations (12) can be eliminated, and the

velocities and stresses in the fluid occupying the vessel can be written as

%vvtz ¼
J0ðati

3=2yÞ

J0ðati
3=2Þ
Ct þ

At

rtf c
; %vvtr ¼

k
2

2J1ðati
3=2yÞ

ati3=2J0ðati
3=2Þ
Ct þ

At

rtf c
y

" #
;

%sstrz ¼ rtf c
k
2

2J1ðati
3=2yÞ

ati3=2J0ðati
3=2Þ
Ct; %sstrr ¼ %ppt ¼ At;

ðA1Þ

where

At ¼ A0t
f ; Ct ¼ D0t

f J0ða
ti3=2Þ; ðA2Þ

(Womersley 1957b). Upon applying the kinematic conditions at y ¼ y0, constants D00
f and

A00
f in equations (12) can be expressed in terms of D

0
f and A

0
f , and the fluid velocities and

stresses in the annulus can be written as

%vvaz ¼
Y0ðaai

3=2y0ÞJ0ðaai
3=2yÞ � J0ðaai

3=2y0ÞY0ðaai
3=2yÞ

Y0ðaai
3=2y0ÞJ0ðaai

3=2Þ � J0ðaai
3=2y0ÞY0ðaai

3=2Þ

" #
Ca

þ 1�
Y0ðaai

3=2yÞ

Y0ðaai
3=2y0Þ

" #
Aa

raf c
;
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%vvar ¼
k
2

& ' 2ðY0ðaa i
3=2y0ÞJ1ðaai

3=2y0Þ � J0ðaai
3=2y0ÞY1ðaai

3=2yÞÞ
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�
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� �
2ðY0ðaai

3=2y0ÞJ1ðaai
3=2y0Þ � J0ðaai

3=2y0ÞY1ðaai
3=2y0ÞÞ

aai3=2ðY0ðaa i
3=2y0ÞJ0ðaai

3=2Þ � J0ðaai
3=2y0ÞY0ðaai

3=2ÞÞ
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2Y1ðaai
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aai3=2Y0ðaa i
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 !
�
y0

y
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y0 �
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 !" #
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raf c
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;

%ssarz ¼ raf c
k
2

2ðY0ðaai
3=2y0ÞJ1ðaai

3=2yÞ � J0ðaai
3=2y0ÞY1ðaai

3=2yÞÞ

aai3=2ðY0ðaa i
3=2y0ÞJ0ðaai

3=2Þ � J0ðaai
3=2y0ÞY0ðaai

3=2ÞÞ

" #
Ca

(

�
2Y1ðaai

3=2 yÞ

aai3=2Y0ðaai
3=2y0Þ

Aa

raf c

)
; %ssarr ¼ %ppa ¼ Aa;

ðA3Þ

where the new constants Aa and Ca are defined as

Aa ¼ A0a
f ;

Ca ¼
Y0ðaai

3=2y0ÞJ0ðaai
3=2Þ � J0ðaai

3=2y0ÞY0ðaai
3=2Þ

Y0ðaai
3=2y0Þ

D0a
f :

ðA4Þ

When the kinematic conditions are applied at the vessel wall, constants Ct; At; Ca and Aa

can be expressed in terms ofM and N, and the linearized equations of motion of the vessel
[equation (16)] can be written as

d� X þ 1
2
Yzz eX �Yrz

eX �Yrz �X þ 2Yrr

2
4

3
5 kM

N

8<
:

9=
; ¼

0

0

8<
:

9=
;; ðA5Þ

where

Yzz ¼
F10ðatÞ

1� F10ðatÞ
þ

raf
rtf

 !

Fð1; y0; aaÞ½Gðy0; y0; aaÞ � 1� �Fðy0; y0; aaÞ½Gð1; y0; aaÞ � 1�
½Gð1; y0; aaÞ � Gðy0; y0; aaÞ� �Hðy0; aaÞ½Fð1; y0; aaÞ �Fðy0; y0; aaÞ�

;

Yrz ¼
F10ðatÞ

1� F10ðatÞ
�

raf
rtf

 !

½Fð1; y0; aaÞ �Fðy0; y0; aaÞ�
½Gð1; y0; aaÞ � Gðy0; y0; aaÞ� �Hðy0; aaÞ½Fð1; y0; aaÞ �Fðy0; y0; aaÞ�

;

Yrr ¼
1

1� F10ðatÞ
�

raf
rtf

 !

1

½Gð1; y0; aaÞ � Gðy0; y0; aaÞ� �Hðy0; aaÞ½Fð1; y0; aaÞ �Fðy0; y0; aaÞ�
;

ðA6Þ
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function F10 is given by

F10ðaÞ ¼
2J1ðai

3=2Þ

ai3=2J0ðai
3=2Þ

ðA7Þ

(Womersley 1957b), and functions F; G; and H are defined as

Fðx; y0; aÞ ¼
2x½Y0ðai

3=2y0ÞJ1ðai
3=2xÞ � J0ðai

3=2y0ÞY1ðai
3=2xÞ�

ai3=2½Y0ðai
3=2y0ÞJ0ðai

3=2Þ � J0ðai
3=2y0ÞY0ðai

3=2Þ�
;

Gðx; y0; aÞ ¼ x2 �
2xY1ðai

3=2xÞ

ai3=2Y0ðai
3=2y0Þ

;

Hðy0; aÞ ¼ 1�
Y0ðai

3=2Þ

Y0ðai
3=2y0Þ

:

ðA8Þ

The first term on the right-hand side of equations (A6) corresponds to Womersley’s
solution for an unconstrained tube, whereas the second term accounts for the effect of the
constraint.
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